
J
H
E
P
0
9
(
2
0
0
7
)
0
4
5

Published by Institute of Physics Publishing for SISSA

Received: July 13, 2007

Accepted: August 30, 2007

Published: September 10, 2007

Two centered black holes and N = 4 dyon spectrum

Ashoke Sen

Harish-Chandra Research Institute

Chhatnag Road, Jhusi, Allahabad 211019, India

E-mail: sen@mri.ernet.in

Abstract: The exact spectrum of dyons in a class of N=4 supersymmetric string theories

is known to change discontinuously across walls of marginal stability. We show that the

change in the degeneracy across the walls of marginal stability can be accounted for pre-

cisely by the entropy of two centered small black holes which (dis)appear as we cross the

walls of marginal stability.

Keywords: Black Holes in String Theory, D-branes, p-branes, Superstrings and

Heterotic Strings.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep092007045/jhep092007045.pdf

mailto:sen@mri.ernet.in
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
7
)
0
4
5

Contents

1. Introduction 1

2. Prediction from exact dyon spectrum 2

3. Two centered small black holes 5

4. Conclusion 8

1. Introduction

We now have a good understanding of the exact spectrum of a class of quarter BPS dyons

in N = 4 supersymmetric string theories, obtained by taking an asymmetric ZN orbifold

of heterotic or type IIA string theory compactified on T 6 [1 – 13]. It is also known that as

we cross various walls of marginal stability associated with the possible decay of the dyon

into a pair of half BPS states, the degeneracy changes by a certain amount that is exactly

computable [11]. On the other hand the asymptotic expansion of the degeneracy formula

for large charges reproduces the entropy of the corresponding black hole not only to the

leading order, but also to the first subleading order in an expansion in inverse power of the

charges [14, 4, 7 – 9]. Given this correspondence between dyon spectrum and black hole

entropy, a natural question to ask would be: can we understand the jump in the degeneracy

across walls of marginal stability on the black hole side?

The question is somewhat tricky since these jumps in the degeneracy are exponentially

small compared to the leading contribution to the entropy [11]. Nevertheless since the

change is discontinuous, one might hope that there is a clear mechanism on the black hole

side which produces these discontinuous changes across the walls of marginal stability and

if we can identify this mechanism then we may be able to reproduce these jumps on the

black hole side. In this paper we shall show that there is indeed a clear mechanism on the

black hole side that describes these jumps, — this is the phenomenon of (dis)appearance

of multicentered black hole solutions for a given total charge as we cross various walls

of marginal stability in the space of asymptotic values of the moduli fields [15 – 19]. In

particular the exponential of the entropy associated with these multi-centered black holes

will reproduce the jump in the degeneracy computed from the exact dyon spectrum.

The role of multi-centered black holes in the context of exact dyon spectrum of N = 4

supersymmetric string theories has been discussed before in [12]. In this paper the authors

considered a special class of dyonic states for which there is no single centered black hole

solution but whose degeneracy is predicted to be non-zero by the exact formula, and showed

how such states may be represented as 2-centered black holes. However for the charge vector
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used in [12] each of these two black holes had entropy of order unity, and hence their role

in producing the correct contribution to the degeneracy was not manifest. In contrast we

consider a dyonic state with large charges for which the change in the degeneracy across

the wall of marginal stability is exponentially large (even though it is exponentially small

compared to the leading contribution). The 2-centered black hole whose (dis)appearance

across the wall of marginal stability is responsible for this jump is a pair of small black

holes each carrying large charges and hence large entropy [20 – 28]. Thus one can calculate

the entropy associated with this two centered black hole by using standard techniques and

compare it with the logarithm of the jump in the degeneracy across the walls of marginal

stability. The result turns out to be a perfect agreement.

2. Prediction from exact dyon spectrum

Our starting point will be heterotic or type IIA string theory compactified on T 4× Ŝ1×S1

modded out by a ZN group. The action of the ZN group involves 1/N unit of translation

along S1, together with an order N transformation acting on the degrees of freedom asso-

ciated with T 4 and also (in the case of heterotic theory) on the internal left-moving degrees

of freedom. The ZN action is chosen so that it commutes with all the supersymmetries

appearing from the right-moving sector of the world-sheet but (in case of type IIA string

theory) projects out all the supersymmetries coming from the left-moving sector. In this

theory we shall consider dyons carrying momentum (n′, n̂), winding (−w′,−ŵ), Kaluza-

Klein monopole charges (N ′, N̂) and H-monopole charges (−W ′,−Ŵ ′) along S1 and Ŝ1

respectively. Such a dyon will be labelled by the electric and magnetic charge vectors

Q =




n̂

n′

ŵ

w′


 , P =




Ŵ

W ′

N̂

N ′


 . (2.1)

The precise sign convention used for defining these charges can be found in [13]. We shall

denote by M the symmetric SO(2, 2) matrix that encodes information about the moduli

labelling the torus Ŝ1 × S1 and by a + iS the axion-dilaton modulus. If we denote by the

subscript ∞ the asymptotic values of the various moduli, then the quarter BPS dyon of

charge (Q,P ) can decay into a pair of half BPS states of charges (Q, 0) and (0, P ) on the

wall of marginal stability [11]:

a∞ +
(P T (M∞ + L)Q)

[(QT (M∞ + L)Q)(P T (M∞ + L)P ) − (P T (M∞ + L)Q)2]1/2
S∞ = 0 , (2.2)

where

L =

(
0 I2

I2 0

)
(2.3)

is the SO(2, 2) invariant matrix. There are other walls of marginal stability associated with

the decay into other pairs of half-BPS states [11] but we shall carry out our analysis in the

vicinity of the wall (2.2). Other cases may be analyzed in the same way.
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We shall consider diagonal M∞ of the form:

M∞ =




R̂−2

R−2

R̂2

R2


 . (2.4)

In this case R̂ and R can be interpreted as the radii of Ŝ1 and S1 respectively, measured

in units of
√

α′. We shall also focus on a special class of dyons for which1

Q =




0

−n/N

0

−1


 , P =




Q1 − 1

−J

Q5

0


 , , n, J,Q1, Q5 ∈ Z, n,Q1 ≥ 0, Q5 > 0 ,

(2.5)

since for these states the exact degeneracy — more precisely an index that counts the

number of bosonic minus the number of fermionic supermultiplets2 — can be computed by

using a dual type IIB description [7 – 9]. In this case (2.2) takes the form:

a∞ = ac, ac ≡ − J R̂

R{Q1 − 1 + R̂2Q5}
S∞ . (2.6)

The weak coupling region of the dual type IIB string theory corresponds to the large R

region in the current description [11]. In this region the degeneracy formula takes the

form [7 – 9] (see [11] for a review of the results):

d(Q,P ) =

{
d>(Q,P ) for a∞ > ac

d<(Q,P ) for a∞ < ac
, (2.7)

where

d>( ~Q, ~P ) =
1

N

∫

C>

dρ̃ dσ̃ dṽ e−πi(N eρQ2+eσP 2/N+2evQ·P ) 1

Φ̃(ρ̃, σ̃, ṽ)
,

d<( ~Q, ~P ) =
1

N

∫

C<

dρ̃ dσ̃ dṽ e−πi(N eρQ2+eσP 2/N+2evQ·P ) 1

Φ̃(ρ̃, σ̃, ṽ)
. (2.8)

Here

Q2 = QT LQ = 2n/N, P 2 = P T LP = 2Q5(Q1 − 1), Q · P = QTLP = J , (2.9)

1By following the procedure given in [13] we could switch on non-zero values of the first and third

components of Q, but in order to keep the various formulæ simple we shall continue to work with the

charge vector given in (2.5).
2The degeneracy d( ~Q, ~P ) given in (2.7) actually refers to the number of bosonic minus fermionic su-

permultiplets multiplied by a factor of (−1)Q·P+1. The (−1)Q·P+1 factor was not included in the analysis

of [7 – 9, 11]. The (−1)Q·P factor appeared in [29] and reflects the change in statistics in going from a five

to four dimensional viewpoint in the presence of a Kaluza-Klein monopole. The additional − sign appears

in the study of the bound state of a D1-D5 system to a Kaluza-Klein monopole [30, 31]. These will be

discussed in detail in a forthcoming review [32].
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Φ̃(ρ̃, σ̃, ṽ) is a known function of three complex variables (ρ̃, σ̃, ṽ) and C> and C< are a

pair of three real dimensional subspaces of the three complex dimensional space labelled

by (ρ̃, σ̃, ṽ) ≡ (ρ̃1 + iρ̃2, σ̃1 + iσ̃2, ṽ1 + iṽ2). They are defined as

C> : ρ̃2 = M1, σ̃2 = M2, ṽ2 = −M3,

0 ≤ ρ̃1 ≤ 1, 0 ≤ σ̃1 ≤ N, 0 ≤ ṽ1 ≤ 1 ,

C< : ρ̃2 = M1, σ̃2 = M2, ṽ2 = M3,

0 ≤ ρ̃1 ≤ 1, 0 ≤ σ̃1 ≤ N, 0 ≤ ṽ1 ≤ 1 , (2.10)

M1, M2 and M3 being large but fixed positive numbers with M3 ≪ M1,M2. For ṽ ≃ 0, Φ̃

takes the form:

Φ̃(ρ̃, σ̃, ṽ) = −4π2 ṽ2 f(Nρ̃)g(σ̃/N) + O(ṽ4) , (2.11)

where (f(τ))−1 and (g(τ))−1 have the interpretation of the generating function for the

degeneracies of purely electric half-BPS states and purely magnetic half-BPS states re-

spectively. For example for the ZN orbifold of the heterotic string theory on T 4 × Ŝ1 × S1

with prime values of N we have [4]

f(τ) = (η(τ/N))k+2η(τ)k+2, g(τ) = (η(τ))k+2η(Nτ)k+2 , k ≡ 24

N + 1
− 2 . (2.12)

For N = 1, i.e. for heterotic string theory on T 4 × Ŝ1 ×S1, this gives us back the standard

result η(τ)24 for both f(τ) and g(τ).

The jump in the degeneracy as we move from a∞ < ac to a∞ > ac is determined by

an integral over the difference between the contours C> and C<. The contribution to this

integral comes from the pole of the integrand at ṽ = 0 [11]. Substituting (2.11) into (2.8)

and evaluating the residue at the pole at ṽ = 0 we get

d>(Q,P ) − d<(Q,P ) = −Q · P del(Q) dmag(P ) , (2.13)

where

del(Q) =

∫ 1

0
dρ̃ e−iπN eρQ2

(f(Nρ̃))−1 , dmag(P ) =
1

N

∫ N

0
dσ̃ e−iπeσP 2/N (g(σ̃/N))−1 ,

(2.14)

are the degeneracies of purely electric and purely magnetic half-BPS states carrying charges

Q and P respectively. Thus ln del(Q) and ln dmag(P ) are the entropies of small black holes

of electric charge Q and magnetic charge P respectively. Since ln |Q · P | is subleading

compared to these entropies for large Q2 and P 2 i.e. for

n,Q1, Q5 ≫ 1 , (2.15)

we see that ln |d>(Q,P )−d<(Q,P )| can be identified as the sum of the entropies of a small

electric black hole of charge Q and a small magnetic black hole of charge P . In carrying

out the analysis on the black hole side we shall choose charge vectors satisfying (2.15).

Taking into account the sign of the right hand side of (2.13), and assuming that this

phenomenon has a description in the dual black hole picture, we can draw the following
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conclusion:3 For J(= Q · P ) > 0, as we cross the wall of marginal stability (2.6) from

a∞ > ac to a∞ < ac, a new configuration should appear whose entropy is equal to the sum

of the entropies of a small electric black hole of charge Q and a small magnetic black hole

of charge P . On the other hand for J(= Q · P ) < 0, as we cross the wall of marginal

stability (2.6) from a∞ < ac to a∞ > ac, a new configuration should appear whose entropy

is equal to the sum of the entropies of a small electric black hole of charge Q and a small

magnetic black hole of charge P .

In section 3 we shall verify this explicitly by identifying the new configuration as a

two centered black hole solution with an electric center of charge vector Q and a magnetic

center of charge vector P .

3. Two centered small black holes

For describing the two centered black hole we shall use the N = 2 supersymmetric descrip-

tion of the same system described above. In the supergravity approximation the relevant

part of the theory is described by the prepotential (see [34] for a review):

F = −X1X2X3

X0
, (3.1)

where XI ’s are scalar fields. These are related to the scalar fields a + iS and M via the

relations

a + iS =
X1

X0
, T = −i

X2

X0
, U = −i

X3

X0
, (3.2)

iT and iU being the Kahler and complex structure modulus of the torus Ŝ1 × S1. They

contain the same information as the matrix M . In particular for the asymptotic M given

in (2.4), we have

T∞ = RR̂, U∞ = R̂/R . (3.3)

The theory contains four gauge fields, and we shall denote the electric and magnetic charges

associated with these gauge fields by q0, q1, q2, q3 and p0, p1, p2, p3 respectively. These

charges can be related to the charge vectors Q and P introduced earlier via the relation:

Q =




q0

q3

−p1

q2


 , P =




q1

p2

p0

p3


 . (3.4)

Thus for the configuration (2.5) we have

(q0, q1, q2, q3) = (0, Q1 − 1,−1,−n/N), (p0, p1, p2, p3) = (Q5, 0,−J, 0) . (3.5)

3There are two points to note here. First when a new configuration with same charge appears in the

black hole system, its degeneracy (or more precisely the index), i.e. exponential of the entropy, will add to

the degeneracy of the other configurations of the same charge. Second, we shall be implicitly assuming that

the new system that appears gives a positive contribution to d( ~Q, ~P ). Otherwise the condition on Q · P

stated in the proposal will be reversed. With the sign convention for d( ~Q, ~P ) described in footnote 2 this

assumption is consistent with the wall crossing formula of [33, 18].
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The theory has an underlying gauge invariance that allows for a scaling of all the XI ’s by

a complex function. We shall fix this gauge using the gauge condition:

i(X̄IFI − XI F̄I) = 1 , FI ≡ ∂F/∂XI , (3.6)

which amounts to setting α′ = 8. This fixes the normalization but not the overall phase of

the XI ’s. While studying a black hole solution carrying a given set of charges, it will be

convenient to fix the overall phase of the XI ’s such that

Arg(qIX
I − pIFI) = π at ~r = ∞ . (3.7)

In this gauge one can construct a general multi-centered black hole solution with charges

(q(s), p(s)) located at ~rs. The locations ~rs are constrained by the equations [15 – 17]

hIp
(s)I − hIq

(s)
I +

∑

t6=s

p(s)Iq
(t)
I − q

(s)
I p(t)I

|~rs − ~rt|
= 0 (3.8)

where hI and hI are constants defined through the equations

XI
∞ − X̄I

∞ = ihI , FI∞ − F̄I∞ = ihI . (3.9)

If we define α and β via the relations

X0
∞ = α + iβ , (3.10)

then using (3.1)-(3.3) and (3.9) we get

h0 = 2β, h1 = 2(βa∞ + αS∞), h2 = 2R̂Rα, h3 = 2R̂α/R,

h0 = −2R̂2(αS∞ + βa∞), h1 = 2βR̂2, h2 = 2R̂(βS∞ − αa∞)/R,

h3 = 2R̂R(βS∞ − αa∞) . (3.11)

The gauge condition (3.6) gives

α2 + β2 = (8R̂2S∞)−1 . (3.12)

To proceed further we need to focus on a specific multi-centered solution. Since our

goal is to identify a configuration whose entropy is the sum of the entropies of a purely

electric small black hole of charge Q and a purely magnetic small black hole of charge P ,

the natural object to focus on is a two centered solution with electric charge Q at one

center and a magnetic charge P at the other center. This will automatically have the

desired entropy.4 Using (2.5), (3.4) we see that the charges at the two centers are given by:

q(1) = (0, 0,−1,−n/N), p(1) = (0, 0, 0, 0), q(2) = (0, Q1 − 1, 0, 0), p(2) = (Q5, 0,−J, 0) .

(3.13)

4In the supergravity approximation the solution is singular at each center, but once higher derivative

corrections are taken into account each center is transformed into the near horizon geometry of a non-singular

extremal black hole with finite entropy equal to the statistical entropy of the corresponding microstates.

This has been demonstrated explicitly for the ZN orbifolds of heterotic string theory on T 4
×

bS1
× S1 [20 –

28]. In this case the modifications of the solution due to higher derivative corrections can be found using

the method developed in [35]. This approach fails for type II string compactification, most likely due to

the absence of an AdS3 factor in the near horizon geometry of the small black hole. However it is expected

that once the effect of full set of higher derivative terms are taken into account the entropy of a small black

hole in type II string theory will also reproduce the statistical entropy of the corresponding microstates.

– 6 –
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eqs.(3.8) for s = 1 and 2 now gives:

h2 +
n

N
h3 =

J

L
, (3.14)

h0Q5 − h2J − h1(Q1 − 1) +
J

L
= 0 , (3.15)

where L = |~r1 − ~r2| is the separation between the two centers. Using (3.11) and (3.14) we

get

α =
J

2L

1

RR̂ + n
N

bR
R

. (3.16)

Using (3.11) and (3.16) we may now express (3.15) as

β

(
a∞(Q1−1+R̂2Q5)+

R̂JS∞

R

)
+α

(
(Q1−1+R̂2Q5)S∞−R̂R− n

N

R̂

R
− R̂Ja∞

R

)
= 0 .

(3.17)

Substituting (3.16), (3.17) into (3.12) we can determine L. The ambiguity in determining

the sign of L can be fixed using (3.7).

We are interested in determining under what conditions the two centered black hole

solution described above exists. For this we note that a sensible solution should have

positive value of L. Typically as we change the values of the asymptotic moduli keeping

the charges fixed, the value of L changes. On some subspace of codimension 1 the value of L

becomes infinite and beyond that the solution gives negative values of L which means that

the solution does not exist. To determine this codimension 1 subspace we simply need to

determine the conditions on the asymptotic moduli for which L = ∞. From (3.16) we see

that in this case α = 0. Since eq.(3.12) now requires β to be non-zero, we see from (3.17)

that

a∞(Q1 − 1 + R̂2Q5) + R̂JS∞/R = 0 . (3.18)

This is identical to the condition (2.6) for marginal stability [15]. Thus we conclude that as

a∞ passes through ac, the two centered black hole solution carrying an entropy equal to the

sum of the entropies of a small electric black hole of charge Q and a small magnetic black

hole of charge P , (dis)appears from the spectrum. This is precisely what was predicted at

the end of section 2 by analyzing the exact formula for the degeneracy of dyons.

In order to complete the verification of the predictions made at the end of section 2

we need to determine on which side of the a∞ = ac line the two centered solution exists.

For this we use eq.(3.7). For the solution under consideration this gives, using (3.17),

α

(
a∞(Q1−1+R̂2Q5)+

R̂JS∞

R

)



1+

(
(Q1−1+R̂2Q5)S∞−R̂R− n

N

bR
R− bRJa∞

R

)2

(
a∞(Q1−1+R̂2Q5)+

bRJS∞

R

)2





< 0 .

(3.19)

First consider the case J > 0. Since L must be positive for the two centered solution to

exist, we see from (3.16) that α > 0. In this case the term on the left hand side of (3.19)

is negative for a∞ < ac and positive for a∞ > ac. Thus the inequality is satisfied only

– 7 –
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for a∞ < ac, leading to the conclusion that the two centered black hole exists only for

a∞ < ac. A similar analysis shows that for J < 0, the two centered black hole exists only

for a∞ > ac. This is exactly what has been predicted at the end of section 2 from the

analysis of the exact dyon spectrum of the theory.

4. Conclusion

The main conclusion that can be drawn from the analysis of this paper is that the exact

formula for the degeneracy of dyons in N = 4 supersymmetric string theories encodes in-

formation not only about the single centered black holes, but also about the multi-centered

black holes whose total charge adds up to that of the dyon whose degeneracy is under con-

sideration. Since in the present example the contribution to the degeneracy from the two

centered black holes is exponentially small compared to that from the single centered black

hole, our results indicate that the correspondence between the microscopic degeneracy of

states and black hole entropy extends beyond the leading asymptotic expansion, — not

only for terms which are suppressed by inverse powers of charges but also for terms which

are exponentially suppressed.

Note added: the relation between the two centered black holes and the jump in the

degeneracy in N = 4 dyon spectrum has also been discussed in [36] which appered a few

days after this paper was first submitted to the arXiv.
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